THE FLOW OF A COMPRESSIBLE DUST — GAS
MEDIUM IN TUBES, IN SEVERAL THERMAL
AND STRUCTURAL REGIMES

V. A. Shvab

We examine the one-dimensional motion of a compressible dust—gas medium in tubes in the
case of critical pressure differences and great flow-rate concentrations of a finely dispersed
material, with the latter exhibiting various distribution structures in the flow.

The motion of a compressible dust—gas medium in tubes at great pressure differences is character-
ized by a number of features associated with the critical conditions of the discharge of a two-phase medium,
the nature of the distribution of the admixtures in the flow, and with the conditions of the mechanical and
thermal interaction between the carrier medium and the admixtures. A particularly significant effect is
exerted on the characteristic features of the flow by a change in the structure of the admixture distribu-
tions. Motion with a rather uniform distribution of solid particles through the cross section of the tube is
found to occur with large inlet velocities for the carrier medium and is characterized by a substantial lag
on the part of the solid phase with respect to the carrier medium.

Another case of a structural unique feature in the motion of admixtures for critical pressure dif-
ferences corresponds to the relatively low velocities of the carrier medium at the inlet to the tube. In this
case, as a result of the settling out of the admixtures we find the formation of a "plug" regime which — with
an artificial regular and stable motion — exhibits fundamental features that are in good agreement with the
requirements of high-pressure pneumatic transport {7].

In this paper we examine two extreme variants of structural organization in a flow. In the first, we
assume a uniform distribution for the suspended particles of the admixtures in the lateral cross section of
the tube; in the second we deal with a case analogous to "plug" motion, in which the velocity of the carrier
medium and that of the admixtures are close in magnitude and differ only as a consequence of the limited
filtration of the gas through the packing.

The familiar system of differential equations of motion for a two-phase medium 1-7] — derived
through the averaging of integral equations, with all of the assumptions satisfying this averaging and the
properties of the hypothetical heterogeneous medium — can be used as the basis, and validly so, for an in-
vestigation of the case of one-dimensional flow of a compressible two-phase medium in the presence of
finely dispersed admixtures. For the case of one-dimensional flow in a tube we make the assumption that
it is possible to calculate the frictional resistance in hydraulic form, and this is in agreement with the as-
sumption as to the linear nature of the variation in the tangential stresses in the lateral cross section of
the flow in a tube, for each component of the mixture separately.

The system of equations for the one-dimensional flow of a compressible two-phase medium in tubes
can be presented in the following form:
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where k is the relative coefficient of heat capacity
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F is the force of interaction hetween the gas and the particles [8]
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L,(q — v) is the integral value of the difference between the heat passed through the tube wall and the work
of the frictional resistance forces, Re5 = (u— w)5/v.

The values of the resistance factors A and A, are determined from experimental relationships. For
the carrier medium A = 0.314/Re®?® when Re = 10° while for the transported finely dispersed materials
(soot, kaolin) we have A, = (1.0-1.7) - 107 (o/p;)/ Re'-!, where Re = uD/v is taken from the velocity of the
carrier flow (Re = 10%) [7].

The system of equations (1)-(7) is closed and can be modified to a form convenient for investigation.
Using (7) and (3) we exclude the pressure derivative from (1) and (2). Assuming cp/cV =% = const, we obtain
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Replacing the derivative dp/d¢ in (1) and (2) from (8) and solving these simultaneously for the velocity
derivatives du/d¢ and dw/d¢, we will obtain in dimensionless form
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The heat-transfer equation (4), if we use the enthalpy relationship (3), can also be brought to dimensionless
form, i.e.,
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Fig. 1 Fig. 2
Fig.1. a) Dimensionless particle velocity W and gas velocity U for
6 =20-10"% m as a function of y: 1) g =10; 2) 20; 3) 50; b) dimen-
sionless coordinate ¢ =x/L4U (1), W (2), and 7 (3) for 6 =20-107°
m and p =20,
Fig. 2. Critical velocities W, and U, as functions of the flow-rate

concentration p: 1) for particles 6 = 20-107° m; 2) for gas with A
= 0; 3) the same, for A = «; 4) the same, for isothermal flow.
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The value of the coefficient A for finely dispersed material can be treated as a constant average value in
the light of the insignificant change in the Nu number.
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In studying the right-hand member of (11) which is the original equation in the numerical method of
the solution, we see that the relationship between the dimensionless values of the velocities W and U is
established directly when A =0 or A—= and g~ 1 = 0. It is evident that this condition A = 0 corresponds
to temperature equilibrium between the components of the mixture and is achieved under practical condi-
tions with a very small size for the admixture particles (6 —0). Another extreme case A — «© occurs with
a rather high value for 6 or as L, — 0 and, according to (4), corresponds to the condition d#/d¢ = 0, in which
there is no interphase heat transfer. In this special case the numerical solution of (11) leads directly to the
relationship W = £(U). On the basis of this relationship we can solve (9), which establishes the dependence
of the velocities W and U on the coordinate ¢ for the extreme heat-transfer conditions.

The critical condition for the discharge of a two-phase medium corresponds to the singular point on
the integral curves of (9) and (10), for which, with the same value of the denominator of the right-hand
member equal to zero

CDi* + ﬁ(‘Dz-ﬂ T ®3* - Os (13)

the derivatives dU/d¢ and dW/d¢ simultaneously tend toward infinity. Equation (13) establishes the rela-
tionship between the critical flow parameters, including the relationship between the velocities U, and W,
[4]. It follows from (11) that the critical value of the derivative (dW/dU), remains an extremely limited
quantity of the order of g, which indicates substantial lag on the part of the admisxture particles from the
carrier medium in the outlet critical section of the tube.

Let us examine the motion of a two-phase medium with finely dispersed heavy admixtures for large
flow-rate concentrations of the latter, when p/p, < 0.001 and p > 5 and, consequently, § is smaller than
0.0002. To determine the physical features of motion, in this case we use the possible simplification of
{9, (11), and (13), assuming that g = 0.

The critical condition (13) for this flow in substantially simplified and we will have &; = 0. Expanding
the value of ®; and determining the value of the critical particle velocity W, from this relationship, for A
= 0 we obtain

W= //W§+—1~[Uf+U3+ 2k (1 1 (14)
p .
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In the absence of interphase heat transfer (A = «) in this relationship we must assume the value of k to be
equal to unity. I follows directly from (14) that W, is a function of the initial values of the velocities W,
and U, and diminishes with an increase in the flow-rate concentration u. The value of the derivative (dW
/dU), =0, moreover, indicates that in front of the outlet critical section of the tube the rate of increase in
the gas velocity is substantially greater than the rate of increase in particle velocity. The critical tube
length L, in this case, according to (9), will be
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We see from the integrand that the critical length diminishes with an increase in the flow~-rate concentra-
tion 4, with an increase in the dispersion of the admixtures (w ~ 6%, and in weaker fashion as the frictional
resistance increases. To illustrate the above-cited points, we undertook the numerical solution of (11) and
{9) by the Runge — Kutta method. We examined the flow in a tube with a diameter of D = 0.027 m and the
initial parameters Uj = 0.2, Wy = 0.1, Ty = ¢, = 290°K, p, = 0.62 kg/m?, p; = 180 kg/m?, /ey =1, m = cp/ey
=14,6=20u, 10k 54, Lu, 4 =10, 20, 50, B = ,00/,01u = <0.00035, with air serving as the carrier medium.
Figure 1a shows W as a function of U for values of 1 = 10, 20, 50 when & = 20 4. The calculations carried
out for the same ¢ and 6 = 20 u for various intensities of the interphase heat transfer show the very weak
effect of a change in the dispersion of the admixtures (when 6 = 20 y) on the intensity of interphase heat
transfer, and of the frictional resistance on the function W = f(U), and in this connection the dispersion re-
mains virtually constant for all variants of flow examined here, and in first approximation is subject to the
following relation (when y > 5):
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Fig.3. Relative critical tube length L, /L, as a function of the con-
centration (1) and of the size (2) of the solid particles. L,y is the
critical tube length for p =10, § =20-10"¢ m, U, = 0.2, W, = 0.1.

Fig.4. Critical velocity (1), inlet velocity (2), and relative critical
tube length L*/D (3) as functions of the concentration ¢ for the case
of motion without particle lag (u, m/sec),

Figure 1b shows the approximate nature of the dimensionless velocities W, U, and the ratio = = (p—p,)
/(py— py) as functions of the coordinate ¢. The critical velocities Wy and U, as functions of the flow-rate
concentration y are given in Fig, 2. They remain virtually unchanged for any intensity of interphase heat
transfer, but the initial velocities W, and U, exert a significant effect. The dimensionless critical gas
velocity U, within the range of variation 10 = p = 50 in the flow-rate concentration for an adiabatically
insulated flow and with an equilibrium temperature for the mixture is close to unity in value, whereas for
a homogeneous gas (¢ = 0) when » = 1.4, we have

Uy =us Vnjay=V2/(=+ 1) =1.08.

In the absence of interphase heat transfer (k = 1), within the same limits for p, the critical velocity
U, increases with an increase in p in the limits 0.95 =TU = 0.5. The critical tube lengths for flows
with high concentration of finely dispersed admixtures are extremely limited in magnitude. Thus, for
example, for ¢ =10 and § = 20 ¢ we have Ly /D = 5.01 for the above-indicated initial parameters, The
nature of the change in L, /L, is shown in Fig. 3, from which we see that there is a significant reduction
in the critical length as the flow-rate concentration and the dispersion of the admixtures increase. These
results are in good agreement with the experimental and theoretical data of [5], but they serve as a signifi-
cant refinement of the critical discharge parameters for a heterogeneous medium.

The plug regime in the motion of a two-phase compressible medium in tubes is characterized by a
velocity lag on the part of the carrier medium with respect to the transported material, in proportion to
the filtration of gas through the plug seal formed by the transported material. In this connection, we as-
sume that w = nu, where the coefficient n — a function of the filtration rate — is assumed to be constant.
Examining the continuous motion of a compressible heterogeneous medium under this condition, on the
basis of (1) and (2), we find

du 1 dp L, (16)
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For an adiabatic.ally insulated flow, under the extreme conditions of interphase heat transfer, the enthalpy
will be

1 u?
= — —(1 il & 17
h k[B (1 + pn) 2] (17

Eliminating the pressure gradient from (16), we find
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The critical tube length is determined from (19) for ¢ =1 and z = z,, where z, is the critical value of this
parameter:

2, =14 ‘/ | g 2MPle— D)2k (T + pn)
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whose value is determined for the limit condition from (18). Correspondingly, the critical value for velocity
will be
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Characteristic of this flow, given high flow-rate concentrations 4, is the relatively small critical discharge
velocity, as well as the large critical tube lengths, and the extremely effective energy balance of transport.
To illustrate the above, Fig.4 shows U,. Uy and L*/D as functions of the flow-rate concentration for the
special case: D =0.0027 m, uG = 0.14 kg/sec, p =250 kg/m?, p = 9.81-10° N/m, T, = 300°K, and n = 1.
These results are in good agreement with the experimental data of [6, 7].

In conclusion, we note a substantial difference in the characteristics of motion for compressible
heterogeneous media at critical pressure differences, and with large flow-rate concentrations in two sep-
arate cases, corresponding to the suspended state of the admixtures and the quasiplug motion of the latter.
In the first case the motion is possible only with sufficiently great initial flow velocities and it is character-
ized by high critical gas velocities, a substantial velocity lag onthe part of the admixtures, and extremely
limited critical tube length. In the second case, the presence of relatively small critical velocities and
larger critical tube lengths is characteristic of the optimum utilization of the gas energy, which leads to
the possibility of transporting the admixtures over great distances, at a high flow-rate concentration of the
latter [6, 7].

NOTATION
u, w are the velocities of the gas and of the particles, respectively;
U, W are the dimensionless gas and particle velocities;
P is the static pressure;
£ =x/Ly is the dimensionless coordinate;
Ly is the critical tube length;
€, & are the volume concentrations:
P, Py are the true densities;
D, s is the tube diameter and the cross-sectional area;
h is the gas enthalpy;
Cps Cy» €1 are the heat capacities of the gas and of the particles;
X =cp/ey;
H is the flow-rate concentration:
T is the gas temperature;
9 is the average particle temperature;
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6, m, o, f are, respectively, the average particle diameter, its mass, its surface area, and its mid-
section;

R is the gas constant;

A is the coefficient of particle thermal conductivity;

G is the mass flow rate of the gas.

Symbols

*  denotes the critical parameter;
0 denotes the parameters referred to the inlet section of the tube;
1  denotes the parameters which pertain to the solid phase.
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